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Abstract-A two-dimensional continuum theory of microstructure is developed for stress analysis of
angle-ply laminates under in-plane loading. An example problem is used to evaluate the results of the theory
against a reference solution obtained by the finite element method. The results are in satisfactory agreement;
they also show that the in-plane stresses reach somewhat higher peak values than reported in previous
literature.

The theory is also presented in a simplified version, which is found to be adequate for predicting
interlaminar stresses and in-plane stress resultants, but does not give acceptable results for the variation of
in-plane stresses through the thickness of the laminations.

INTRODUCTION
Rapidly increasing utilization of advanced composites in aerospace industry has created an
urgent need for reliable design methods for fiber-reinforced laminates. Clearly, such methods can
come of age only after suitable techniques of stress analysis have been developed. At the present
time the choice is limited to numerical solutions (finite elements of finite differences) of the
three-dimensional elasticity problem [1-3], and the classical lamination theory.

Numerical solutions are costly and lack the viability to be serious contenders as practical
design tools (it must be emphasized that we are dealing with a complex distribution of stress in
three dimensions which results in a very large number of equations). The lamination theory, on
the other hand, is too simple to be of much value in failure prediction, because it is invalid in
regions where failure usually starts, such as boundaries and other discontinuities of the laminate.

Several attempts have been made to devise methods that lie in-between three-dimensional
elasticity solutions and the lamination theory. The first theory in this category was presented by
Puppo and Evensen[4]. Their model of the composite leads essentially to lamination theory with
interlaminar shear deformation. The resulting equations, however, are incomplete in the sense
that they provide no means of controlling the transverse shear tractions at the boundaries of the
laminate. The model also assumes the in-plane stresses to be constant through the thickness of
each lamination, which is an unacceptably poor approximation of the actual stress distribution.
Other publications [5-9], although capable of good results, have a major drawback: each of the
methods is tailored for a specific boundary value problem and does not lend itself to
generalization.

The present paper introduces a two-dimensional continuum theory of microstructure for
angle-ply laminates under in-plane loading. Both generalized plane stress and plane strain
versions of the theory are presented. The resulting equations provide complete control over the
inplane as well as the transverse shear tractions at the boundaries of the laminate, so that their
application is not restricted to certain boundary value problems. Moreover, the theory can be
adapted to cross-ply laminates by a straightforward transformation of the governing equations.
The stresses derived from the theory are shown to compare favorably with a finite element
solution of the classical, three-dimensional equations of elasticity, at least for the example
problem used.

The microstructure theory is also derived in a simplified version, but its usefulness appears to
be limited to problems where the interlaminar stresses are of main interest, since it yields poor
results for in-plane stresses at the interfaces.

KINEMATICS OF DEFORMATION

The scope of the work is limited to angle-ply laminates of balanced construction under the
action of in-plane loading. A so-called "basic unit" of a balanced laminate is shown in Fig. 1. It
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Fig. I. Basic unit ofabalancedangle-ply laminate showinglocal andglobal coordinates.

consists of identical, unidirectionally fiber-reinforced layers stacked in a symmetric fashion
about the mid-plane of the unit (the layers with ply angles of (J and - (J are denoted as the A and
b-layers, respectively).

A balanced angle-ply laminate is obtained by stacking any number of basic units on top of
each other. We postulate that the stress distribution is identical in each basic unit, and
independent of the number of units used. Consequently, it is sufficient to study only one basic
unit of the laminate. This postulate can be viewed as a generalization of the plane stress, plane
strain assumption of the classical elasticity theory.

The technique used for modelling the laminate is the "effective stiffness" approach originally
devised by Achenbach and Herrmann[lO] for wave propagation, and subsequently refined by
Drumheller and Bedford [11]. We start by expanding the displacement field of each layer in terms
of polynomials in the transverse (x/ or x/) coordinate. It can be shown that the lowest-order,
nontrivial model (i.e. a model that does not degenerate into lamination theory) is obtained by
truncating the series after the quadratic terms. The displacement components of a typical A or
B -layer can thus be written in the form

2

A.B ( A.B) ~ P ( A.B )",A.B( ). 1 2 3Ui XI,X2,X3 = LJ ,X3 'Vi, XI,X2 ,I = , , ,
r=O

where p, represent the Legendre polynomials

(1)

Po(z) = I, (2)

and <I>~.B are unknown functions.
Noting that the assumption of generalized plane stress or plane strain implies displacement

symmetry about the planes X3 A = 0 and X3 B = 0, we conclude that

ex = 1,2. (3)

In addition, we should impose continuity of displacements at the interfaces: Ui
A

(XI, X2,

± 1) = Ui
B

(XI, X2, +: 1). It is convenient to satisfy continuity of the in-plane displacements by
introducing the generalized displacements v" (X., X2), V" (XI, X2), x" (X., X2), t/h(Xt, X2) and
'l'3(X., X2), such that

(4)
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where the upper sign refers to the A -layer and the lower sign to the B -layer. Substituting (3) and
(4) in (1), we obtain

(5)

which yield the following components of the strain tensor for the individual layers:

2f:~B = PO[(va.1l + VIl,a) ± (Va,1l + VIl,a)] +P2[(Xa,1l +XIl,a) + (Va.1l + VIl,a)], (6a)

1
ftjB=yPO(1/J3±'J13), (6b)

Generalized plane strain version of the theory is obtained by enforcing continuity also upon
U3, i.e. by setting 1/J3 = O. According to (6b), we then have d3 + f~3 = 0, meaning that the net
expansion of the laminate vanishes.

It is now clear that the transverse displacement cannot be made continuous in the case of
generalized plane stress.

An analogous situation exists in the classical elasticity theory, where all the compatibility
equations are imposed upon the plane state of strain, but only in-plane compatibility may be used
for plane stress. We do neglect, however, the underlined term in (6c), because otherwise the
formulation would not reduce to the classical plane stress model for 8 = 0, but takes the form of a
strain gradient theory. Again we point out that a similar simplification is used in the classical
plane stress theory, where by setting f 13 = f23 =0, the gradients of thickness variation are ignored
in the computation of stresses.

From here on, all the equations will be derived for the case of plane stress. Modifications of the
theory required for plane strain will be presented at the conclusion of the derivations.

EULER EQUATIONS AND BOUNDARY CONDITIONS

The stress-strain relations of the individual layers, referred to the global (Xl, X2, X3) coordinate
system, are

(7)

(note that summation convention is used throughout the paper). The elastic stiffness coefficients
C,11d are obtained from the stiffness coefficients ellkl of the local coordinates (principal layer
directions) by the usual transformation equations

where

(8)

cos 8

IIgun" = sin 8
o

-sin80
cos 8 0
01'

and 8 is the ply angle shown in Fig. 1. The explicit expressions for the non-vanishing C,jkl can be
found in Ref. [12].

The constants Cm3 and C1233 are usually an order of magnitude smaller than the other
stiffness coefficients, enabling us to use the approximation

C1323 = C1233 = O.

It is now a simple matter to compute the average strain energy density Eo of the laminate:

(9)

(10)
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In fact, using the orthogonality properties of the Legendre polynomials, the explicit expression
for Eo can be obtained in a single step; the result is given in Appendix A.

The Euler (equilibrium) equations and the natural boundary conditions can now be derived
from the principle of stationary potential energy by the usual means of variational calculus. The
Euler equations take the form

t"I'," = 0, (lIa)

T"I'." - SI' = 0, (lIb)

hal',a - kl' = 0, (lIe)

La3,a - M 3 = 0, (lId)

m3=0, (lIe)

where comma is used to denote differentiation, The generalized stresses appearing in (I la-e) are

aEo I
hll =-a- =5' [CIlIlXt,t + C Il22X2,2 - CIlI2(Vt,2 + V2.t)],

Xu

(l2a)

(l2b)

(l2c)

(l2d)

(l2e)

(l2f)

(l2h)

(Ui)

(l2j)

(12k)

(121)

(12m)

(l2n)

(120)

(l2p)

(l2q)

(l2r)
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In (l2a-r) we used the notation CUkl = Clkl (+ 8).
Solving (lIe) for f/13 and substituting the result in (l2a, b), we obtain

til = CIIIIVI,I + CI122V2,2 + C IIl2(VI.2 + V 2.1),

t22 = C 1122VI,I + C2222V2,2 +C22d V I,2 + V 2,1),

where

and the usual reduced stiffness coefficients of classical plane stress theory.
The boundary conditions obtainable from the variational problem are
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(13a)

(13b)

(14)

taf3na= t~ or V/I= v~, (15a)

Ta/lna= nor V/I= V~, (l5b)

ha/lna = h~ or X/I=X~, (15c)

La3na= Lt or 'I'3='I'~, (15d)

where n is the unit outward normal of the boundary, and an asterisk denotes the prescribed
boundary tractions and displacements.

If we take 8 = 0, then CII12 = C2212 = 0 and taf3 become identical to the stresses of the classical
(orthotropic) plane stress elasticity theory. Moreover, the Euler equations for the "classical"
displacements Va will become uncoupled from the "micro-displacements" Va, Xa and '1'3.

If 8~ 0, but the state strain is homogeneous, the Euler equations can be satisfied with
Va = Xa = '1'3 = O. It can be shown that the in-plane stresses now become II~~B = taf3 ± Taf3 (the
remaining stresses are zero), which are identical to the results of the classical lamination theory.
We point out, however, that although the lamination theory is capable of satisfying the
"classical" boundary conditions (l5a), it cannot generally satisfy the stress-boundary conditions
(I5b) at the same time. Consequently, a free boundary, for example, will give rise to a
"boundary-layer" effect, where the generalized displacements Va, Xa and '1'3 do not vanish.

RECOVERY OF STRESSES

The distribution of in-plane stresses can be obtained by substituting the strains (6a) into the
constitutive (7). The result can be arranged in the form

(16)

where

1
H 22 = 5[- C 1122 VI,I - C 2222 V2•2 + C2212(Xl.2 +X2,1)],

1
H I2 = 5[- CI2I2(VI•2 + V 2,1) + C 1II2XI,I + C22I2X2,2],

(17a)

(17b)

(17c)

the remaining variables being the generalized stresses defined previously.
A characteristic drawback of effective stiffness theories is that the stresses are not completely

controllable at the boundaries. Equation (16) is no exception due to the presence of the forces
Haf3, which did not appear in any of the equilibrium equations or boundary conditions. They are
workless forces in the sense that their contribution to the incremental work
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vanishes. Consequently, Haf3 may be viewed as forces of internal constraint, their sole function
being the enforcement of interlaminar compatibility of the displacements.

Using the same procedure for the interlaminar shear stresses, we get

(I 8)

The underlined term represents stress discontinuity at the interface (another familiar fault of
effective stiffness methods), and is therefore neglected.

The procedure cannot be repeated for the interlaminar normal stress for reasons that become
apparent upon inspection of u/·B in (5). We note that the entire lateral expansion of the laminate
is taken up by the displacement discontinuity at the interface, leaving u/ = 0 on the exterior
surfaces X3 A = O. This means that any lateral pressure applied to the exterior surfaces would be
workless and never appear in the potential energy of the laminate. As a consequence, we have no
direct controlover a33 at X3 A = 0, thus precluding its recovery from the constitutiveequations.

The interlaminar normal stress can, however, be obtained by integrating the equilibrium
equation aU.l + a23.2 + a33.3 = O. Substituting for the shear stresses from (18) and utilizing (Ild),
the result becomes

(I 9)

A NOTE ON GENERALIZED PLANE STRAIN

It was shown previously that the generalized plane strain version of the theory is obtained by
setting 0/3 = 0 at the outset. The generalized stresses are still given by (I2a-r); the Euler eqns
(I la-d) also remain valid, but note that now m3;t. 0, i.e. (I Ie) is not to be used.

The stress recovery formulas are also unchanged, except that now we must add the plane
strain constraint stress 1m3 to the interlaminar normal stress, i.e. (I9) must be replaced by

(20)

EXAMPLE PROBLEM

We illustrate the application of the theory with a simple problem that has been previously
studied by several investigators [l, 2, 4, 6, 7, 9]-a semi-infinite laminate under a homogeneous,
uniaxial strain, as shown in Fig. 2. The properties of the laminate were chosen as follows: 8' = 45°,
Ell = 13.8 x 1010 Nlm 2 (20 x 106 psi), E22=E33=1.45XlOloNlm2 (2.1 x 106 psi), 0 12 =023 =
013 =0.586 X 1010 N 1m 2 (0.85 x 06 psi) and ji\2 = ji23 = jil3 =0.21.

A particular integral of the Euler eqns (lla-d) that yields the prescribed strain Ell = Eo is the
solution of the lamination theory

(21)

A (45°)

}S(-45 0
)

A(45°)

Fig. 2. Semi-infinite laminate used in example problem.
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which yields the following non-vanishing generalized stresses:
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(22)

As T~2 does not vanish at the free boundary, we must superimpose on (21) a solution of the
boundary layer type.

For the specific problem at hand, the boundary layer solution takes the one-dimensional form

V2 =A exp (- PX2/l),

X2 = C exp (- PX2/l),

VI = B exp (- PX2/1),

VI = V2 = XI = '1'3 = 0, (23)

where P must have a positive real part. If (23) are used in (l1a-d), three homogeneous equations
in A, BAnd C will be obtained (the remaining Euler equations will be satisfied trivially). Solution
of the resulting eigenvalue problem will yield two positive, real values of p and the corresponding
eigenvectors (values of AlB and C IB for each value of p). The two values of B are then found
from the boundary conditions at X2 = 0:

h22 = 0, (24)

the remaining boundary conditions being satisfied trivially.
The results of the computation are shown in Figs. 3-6, together with the displacements and

stresses obtained from the solution of the classical equations of elasticity by the finite element
method (see Appendix B for details). The displacement component u. of the finite element
solution (Fig. 3) was found to be perfectly skew-symmetric about the interface and symmetric
about the center of each layer, thereby confirming the assumptions made about the in-plane
displacements. There is, however, a considerable departure in U3 from the assumed linear
distribution near the free edge (Fig. 4).

The in-plane stresses of the finite element solution have extremely steep gradients along the
interface (Fig. 5), culminating in peak stresses just inside the free boundary. These peak values
appear to be considerably greater than reported previously[l]. The corresponding stresses
obtained from the microstructure theory are not quite able to cope with such high gradients, but
still manage to show creditable correlation. Note that (T12 does not vanish at the free boundary for
reasons explained previously.

Figure 5 also compares the average in-plane stresses, computed from

1 J'- A.B _ _ A.B A.B - A.B _ +
(T",(3 - 21 _I (T",(3 dX3 and (T",(3 - t",(3 - T"'(3,

for the finite element solution and microstructure theory, respectively.
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Fig. 3. Distribution of in-plane displacement u, through thickness.
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Fig. 4. Distribution of transverse displacement through thickness.
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Fig. 5. Distribution of in-plane stresses with distance from free edge.

The interlaminar stresses al3 and a33 (the proposed theory predicts a33 = 0 everywhere),
shown in Fig. 6, are also in satisfactory agreement, except at the interface near the free boundary,
where the reference solution predicts very high values (an exact solution of elasticity theory
would probably predict a stress singularity). It must be kept in mind, however, that the locally
high stresses are largely a result of our assumption of material homogeneity within each
layer-see, for example, [13] for a discussion of the topic-and are, therefore, not to be taken
literally. The shear stress component a23 has been omitted from the figures because it vanishes in
the reference solution as well as in the microstructure theory.
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Fig. 6. Distribution of interlaminar stresses with distance from free edge.

SIMPLIFIED VERSION OF THE THEORY

In the preceding theory the interlaminar shear stresses (18) were found to be discontinuous at
the interfaces. We will now explore the possibility of removing these discontinuities by imposing
appropriate constraints on the generalized displacements. It must be realized, however, that
stress continuity is not an intrinsic requirement of the principle of stationary potential energy.
The additional constraints are thus to be viewed as simplifying approximations which in general
lead to less accurate theory.

According to (18) the continuity condition on the interlaminar shear stresses is lea = 0, which
in view of (120, p) requires that X" = O. If this constraint is imposed at the outset, i.e. in eqn (5), X"
will never appear in the strain energy of the laminate. Consequently h"/J and k" vanish altogether
from the Euler equations and boundary conditions.

In summary, the simplified version of the theory is obtained by simply setting

x" = h"/J = k" = 0 (25)

in all the equations derived previously.
The solution of the boundary value problem shown in Fig. 2 is now greatly simplified. The

PLANE OF SYMMETRY

PLANE OF SYMMETRY

XI

Fig. 7. Finite element model used in reference solution.
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Euler eqns (lla, b, d) yield the characteristic solution of the boundary layer problem p2 =

3Cnn/D, A /B = - C2m/Cm2, where D = (6f5)Cnn - C~mfCm2' The boundary condition Tn =

- T?2 at X2 = 0 then gives B = T?2fv(3C 13nD). The expression for the maximum interlaminar
shear is particularly simple: (al3)max = 3Cn13B = pT?2' occurring at the intersection of the free
boundary and the interface.

Detailed results of the simplified theory for the ± 45° laminate can be found in Ref. [12]. It was
shown that an is not significantly affected by the simplification. The average in-plane stresses are
also virtually unchanged, but the thickness-distribution is grossly in error. The simplification is
thus useful only in cases where the interlaminar stresses (or the average in-plane stresses) are of
interest.

An interesting observation is that if we also set 'If3 = 0, the theory can be shown to degenerate
into Puppo and Evensen's model of the laminate.

CLOSURE

The theory presented here is the simplest possible continuum representation of an angle-ply
laminate in the sense that any further simplification would lead to an unacceptable degeneration.

The main deficiency of the theory is the incompatibility of the transverse displacement at the
interlaminar surfaces in the case of plane stress. This discontinuity can be eliminated only by
abandoning the generalized plane stress assumption and admitting bending deformations of the
individual layers. The resulting theory would not only be quite complex, but also dependent on
the number of layers used in its construction.
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APPENDIX A
The average (thickness-average) strain energy density Eo of thll laminate is:

+2CIII2{(VI., + v,.,)(V1.1 -~ XI.,) + Vl.,[(VI.' + v,.,) -~ (XI., +X,.I)]}

+2C2212{ (v.., + V, ..> (v,., -~ X,.,) + v,.,[(v.., + v,..> -~ (X.., +X,.I)]}
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+j C1313[(t XI)' +GVI-~3·,n

+j C2323 [(t X2)' +GV2-~3.2)]

489

APPENDIX B
The finite element reference solution was obtained by the use of the Solid SAP [14] computer program using

isoparametric, hexahedral elements. It was necessary to make two modifications to the program:
(i) Orthotropic material properties and the corresponding transformation equations for the elastic stiffness coefficients

were added (the original elements were limited to isotropic materials).
(ii) Provision was made for kinematical constraints of the type UJ = U, +6, where u, and UJ are the displacements of

specified nodes, and 6 is a prescribed value.
The finite element model of the laminate is shown in Fig. 7. The special kinematical constraints enabled us to impose the

uniform strain fo, and still permit warping of the "cross sections" (XI = constant planes) of the laminate. Symmetry
conditions imposed at X2 = 6/ imply that the results are strictly valid for a laminate specimen of width 12/. However, the
boundary layer is sufficiently narrow so that the effects of a free edge are negligibly smaIl at the center of the strip; i.e. the
finite element model will behave essentially as a semi-infinite body.

In order to check the convergence of the finite element solution, the problem was also solved with a finer grid (using twice
as many elements as shown in Fig. 7, and with a reversed numbering of the nodes. No significant change in the results was
observed.


